Malaysian Journal of Geosciences (MJG)

GEOLOGICAL ASSISTED ON WATER RESOURCES PLANNING IN MOUNTAINOUS CATCHMENTS IN KUNDASANG, SABAH, MALAYSIA

February 28, 2020 Posted by din In Malaysian Journal of Geosciences

ABSTRACT

GEOLOGICAL ASSISTED ON WATER RESOURCES PLANNING IN MOUNTAINOUS CATCHMENTS IN KUNDASANG, SABAH, MALAYSIA

Journal: Malaysian Journal of Geosciences (MJG)
Author: Rodeano Roslee

This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

DOI: 10.26480/mjg.01.2020.26.31

Based on geological mapping and geohydrologic data, water resources planning in mountainous catchment areas in Kundasang are outlined. The area is underlain by thick Paleogene clastic sediment and old Quaternary gravels. These rock units are carved by numerous lineaments with complex structural styles developed during series of regional Tertiary tectonic activities. The tectonic complexities reduced the physical and mechanical properties of the rock units and produced intensive displacements and discontinuities among the strata, resulting in high degree of weathering process and instability. The weathered materials are unstable and may cause subsidence and sliding induced by high pore pressure subjected by both shallow and deep hydrodynamic processes. Evaluation of 60 boreholes data in the study area reveals that the depth of the groundwater table ranges from 1.90 m (6 feet) to 11.20 m (35 feet) deep. The groundwater level in the study area fluctuates even within a short period of any instability of climatic change. The Quaternary sand and gravel layers with variable thickness defined the major shallow aquifers within the underlying weathered materials while the highly fractured sedimentary rocks defined the major deep aquifers. Most of the aquifers within the top unconsolidated weathered clastic material are under unconfined condition. The sedimentary formations are coarse-grained clastic materials generally contain fractured porosity and exhibit higher permeability. However, below subsurface, much of the groundwater is partially confined. Movements of groundwater are sufficiently restricted area to cause slightly different in head depth zones during periods of heavy pumping. During periods of less draught, the various groundwater levels will be recovered to their respective original level. This condition resulted from discontinuous nature of sediments where zones of permeable sand and gravel are layered between less permeable beds of silt and clay. Aquifer characterization and geological data are given to assist the local agencies on the water resources planning of the study area.
Pages 26-31
Year 2019
Issue 1
Volume 4

Download