ABSTRACT
FOCAL MECHANISM SOLUTIONS AND SEISMIC IMPLICATIONS FOR THE EASTERN MAKRAN: A 30-YEAR PERSPECTIVE
Journal: Malaysian Journal of Geosciences (MJG)
Author: Muhammad Imran Hafeez Abbasi, Nangyal Ghani Khan, Faizan Khan
This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
DOI: 10.26480/mjg.02.2024.131.137
The Makran Subduction Zone, straddling the nothern Arabian Sea along the borders of Pakistan and Iran, represents one of the most seismically complex regions on Earth, where the Arabian, Eurasian, and Indian plates converge. This study delves into the seismic intricacies of Eastern Makran, an area delineated by a labyrinth of tectonic demarcations including the Zendan, Jiroft, and Ornach-Nal faults, to uncover the underpinnings of its seismicity through an analysis of focal mechanism solutions (FMS) for earthquakes occurring between 1990 and 2019. Utilizing the Kikuchi and Kanamori method for modeling teleseismic P-waves and their surface reflections, this research filters through the data, discarding those compromised by noise, to present a clear picture of seismic activity ranging in magnitude from 4.0 to 7.8 Mw. Contrary to the expected prevalence of major earthquakes, findings reveal a rarity of such events in Eastern Makran, suggesting a nuanced interaction between the Indian and Eurasian plates marked by anticlockwise rotation. This rotation potentially fosters the isolation of microplates, hinting at a dynamic interplay of tectonic forces. Our comprehensive 30-year perspective provides new insights into the focal depths and fault plane solutions, contributing to a better understanding of the seismic behavior and tectonic mechanisms governing the Eastern Makran Subduction Zone.
Pages | 131-137 |
Year | 2024 |
Issue | 2 |
Volume | 8 |